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SUMMARY
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health.
Historically, efforts to preserve or restore ‘biodiversity’ can seem to be in opposition to human interests.
However, the integration of biodiversity conservation and public health has gained significant traction in
recent years, and new efforts to identify solutions that benefit both environmental and human health are
ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation
can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pan-
demics in humans and livestock. However, our understanding of the mechanisms by which biodiversity
change influences the spillover process is incomplete, limiting the application of integrated strategies aimed
at achieving positive outcomes for both conservation and disease management. Here, we review the litera-
ture, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spill-
over is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and
disease using mechanistic evidence — while encompassing multiple aspects of biodiversity including func-
tional diversity, landscape diversity, phenological diversity, and interaction diversity —we work toward gen-
eral principles that can guide future research and more effectively integrate the related goals of biodiversity
conservation and spillover prevention. We conclude by summarizing how these principles could be used to
integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Introduction
TheCOVID-19 pandemic has brought the threat of zoonoses into

the public spotlight, creating widespread demand for better

management of the ecological sources of disease spillover and

emergence. However, even prior to this pandemic, there has

been an increasing recognition amongst experts of the ties be-

tween healthy ecosystems and human health. This has led to

broader support for global conservation initiatives and spurred

the United Nations’ adoption of sustainable development goals

(the 2030 Agenda). The prevention of zoonotic spillovers is a bio-

security imperative with a patent connection to the human–

wildlife interface; thus, efforts are underway to identify solutions

that both promote biodiversity conservation and facilitate zoo-

notic disease management1. However, given our incomplete un-

derstanding of the mechanisms linking biodiversity to infectious

disease spillover, a clear vision of how to effect positive solutions

for both human health and the environment is needed. Increased

attention to, and resources for, zoonotic disease prevention

make it an opportune time to study the mechanisms connecting

changes in biodiversity with zoonotic disease spillover, and to
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identify (potentially synergistic) solutions for biodiversity conser-

vation and global health.

There has been a contentious debate about the existence and

generality of the relationship between biodiversity and disease:

in particular, the extent to which maintaining biodiversity pro-

tects against disease via a dilution effect versus the alternative

possibility that biodiversity can increase infectious disease

transmission via an amplification effect (see for example refer-

ences2–9). With a few notable exceptions10–16, this debate has

largely focused on correlations between host-species richness

and the prevalence of pathogens in host reservoir populations.

However, this narrowway of framing the impacts of species rich-

ness on host prevalence in most of the empirical literature pro-

vides limited insight into the range of mechanisms by which

biodiversity affects disease, rendering it difficult to integrate

into public health interventions. Here, we expand the focus to

the broader mechanistic relationships among a variety of biodi-

versity components and the zoonotic spillover process. We

then follow with a review of general principles with applied

relevance. Finally, we highlight opportunities where ongoing
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Figure 1. The anthropogenic disturbance, biodiversity change, and spillover cascade.
To understand mechanisms connecting anthropogenic disturbance with spillover via biodiversity change, it is imperative to investigate how anthropogenic
disturbance impacts biodiversity, and how those effects drive the perforation of the layers (intermediate processes) leading to spillover (shown using four case
studies from Table 1 as examples). Zoonotic spillover arises from the alignment of multiple processes (depicted as layers). Apart from human susceptibility to
infection, we found that each layer can be affected by biodiversity change, especially when considering biodiversity along multiple axes (Box 1). Connecting
biodiversity change to explicit processes helps us to better understand how, when, and why biodiversity change impacts zoonotic disease risk. Numbers next to
each layer correspond to the eight case studies highlighted in Table 1. All references for these case studies are included in Table 1.
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conservation initiatives could consider and possibly integrate

these mechanisms further in order to reduce disease spillover

risks (Figure 1, Table 1, and Table 2).

Biodiversity encompasses all forms of variability among living

organisms and the ecological complexes of which they are a

part; these different forms of variability have long been studied

and summarized into related but alternative definitions of biodi-

versity by other ecological fields17 (Box 1). Change in taxonomic

diversity, including species richness, is often an observable

outcome of changes in other types of biodiversity, which more

explicitly guide conservation efforts such as the loss of functional

groups, changes in interaction networks, and heterogeneity

in habitat composition. Identifying how these underlying axes

drive proximate changes in ecosystem processes like disease

transmission is critical for responding to human-mediated

(that is, anthropogenic) change10–16. Zoonotic spillover is

influenced by many ecological processes before a pathogen

actually spills over into a human host. Therefore, changes in

biodiversity can mechanistically affect spillover through several

pathways including effects on the density, distribution, and sus-

ceptibility of reservoir hosts, as well as pathogen prevalence,
infectiousness, survival, dissemination, and reservoir host–

human contact18,19 (Figure 1). Once in the recipient (human)

host, a series of biological and epidemiological factors deter-

mine whether onward transmission is possible18–21 (Figure 1).

To harmonize spillover prevention and biodiversity conservation,

a clear mechanistic understanding is needed of how increases

and decreases in multiple aspects of biodiversity, from individ-

uals to populations to communities to ecosystems, influence

spillover processes (Figure 1).

This review focuses on how infectious-disease systems

change with shifts in biodiversity, highlighting case studies that

suggest causal mechanisms (Figure 1 and Table 1). We group

case studies based on the leading International Union for Con-

servation of Nature-classified threats to biodiversity. Although

examples that mechanistically link environmental change to

zoonotic spillover via at least one metric of biodiversity change

are scarce, our review identifies emerging generalities across

disease systems and anthropogenic disturbances. We find

the best support for an influence of functional, interaction,

ecosystem phenological, and landscape diversity on spillover

risk but recognize that there are additional dimensions of
Current Biology 31, R1342–R1361, October 11, 2021 R1343



Table 1. Case studies of mechanisms connecting anthropogenic disturbance with biodiversity change and the subsequent effects on infectious disease spillover.

Anthropogenic

disturbance

Biodiversity change

(type and direction)

Mechanisms of

biodiversity change

Infectious disease case studies

Spillover layers affected Disease impacts

No. in

Figure 1 References

Agricultural

expansion and

intensification

Functional diversity

(decreased)

Loss of large consumers

increases rodent richness

and abundance

Wildlife host density and

distribution, and pathogen

prevalence

Increased prevalence of

Bartonella in rodents in

Kenya

1 33

Landscape diversity

(decreased)

Resources become limited,

pushing animals into human-

modified landscapes

Wildlife host density and

distribution, and pathogen

prevalence; human

exposure to pathogen

Increased prevalence and

spillover (zoonotic

transmission) of P. knowlesi

in Borneo

2 63

Urbanization Ecosystem phenological

diversity (decreased)

Resources become limited,

pushing migrating animals to

form resident populations in

human-modified landscapes

Wildlife host density and

distribution, pathogen

prevalence, and pathogen

shedding; human exposure

to pathogen

Increased prevalence,

shedding, and spillover

of Hendra virus

3 21

Climate change Functional diversity

(increased)

Polar species replaced by

migrating nonpolar species

(via predation and resource

competition)

Wildlife host density and

distribution; pathogen

survival and spread;

human exposure to

pathogen

Increased spillover risk of

rabies in Alaska as a polar

reservoir of rabies (Arctic fox)

is being replaced by a more

human-landscape adaptable

reservoir species (red fox)

4 120,125

Taxonomic and

interaction diversity

(increased)

Drought and reduction in

water resources lead to

increased density and

diversity of hosts around

shared water resources

Wildlife host density

and distribution

Increased spillover risk of

E. coli in Botswana

5 130,131

Invasive species Taxonomic, functional,

and interaction diversity

(decreased)

Introduction of Burmese

python reduces abundance

of large- and medium-sized

mammals

Human exposure to

pathogen

Increased spillover risk of

Everglade virus in Florida as

mosquito disease vectors

feed on rodent reservoirs

more frequently

6 136,137

Wildlife trade Taxonomic, genetic,

functional, interaction,

and landscape diversity

(decreased)

Removal of wild, mostly large-

bodied animals (via hunting,

trapping, transfer, killing) or

overfishing directly reduces

abundance and diversity of

terrestrial and marine wildlife

species

Wildlife host susceptibility

to infection, and pathogen

shedding; pathogen survival

and spread; human exposure

to pathogen

Increased spillover risk of

Ebola in the Congo Basin as

demand for wild meat from

small-bodied mammals such

as bats (Ebola reservoirs)

increases (hunters and

preparers of the bushmeat

are exposed to bat bites,

scratches, or blood)

7 169,171,173,174

Wildlife trade

and urbanization

Taxonomic and interaction

diversity (increased)

Wildlife markets aggregate

novel assemblages of hosts,

increasing host richness

that is unique to markets

and the food supply chain

Wildlife host density and

distribution, susceptibility

to infection, and pathogen

shedding

Increased wildlife susceptibility

to infection, reservoir density,

pathogen shedding and spread

of SARS viruses

8 162,166,167

Figure 1 illustrates the overall framework for linking anthropogenic disturbance to biodiversity change to disease spillover via the spillover layers being affected in each case study.
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Table 2. Examples of ongoing biodiversity and sustainability initiatives that could potentially incorporate spillover prevention.

Initiative

Year

founded Description Biodiversity goals Potential health goals?

Potential extensions for

preventing spillover Generality References

The Bonn

Challenge

2011 Launched by the

Government of Germany

and the International Union

for Conservation of Nature to

reduce deforestation and

promote ecosystem

restoration

Obtain pledges for 150

million hectares of degraded

and deforested landscapes

globally on which to begin

restoration by 2020 (which

was successfully reached in

2017) and 350 million

hectares by 2030

Improve human health, well-

being, and livelihood by

conserving and restoring

degraded or deforested

landscapes (no mention of

infectious disease burden or

spillover per se)

Landscape restoration of

wildlife habitat, especially for

large-bodied predators and

consumers, could potentially

help reduce spillover risk

driven by increase in rodent

abundance due to

competitor and predator

release related to agriculture

and deforestation

1–3 175

Convention

on Biological

Diversity

1992 A list of goals (2020–2050) for

sustainable nature-based

solutions for improving

planetary health and human

well-being, set by the United

Nations

Address mitigation of

biodiversity loss and

anthropogenic disturbances

Improve human health and

well-being (no mention of

infectious disease burden or

spillover per se)

The Convention on

Biological Diversity

handbooks, including in

2020, do not mention

actionable next steps for

implementing nature-based

solutions. How nature-based

solutionsmay target spillover

prevention merits further

investigation

1–3 195,221

Convention

on International

Trade in

Endangered

Species (CITES)

of Wild Fauna

and Flora

1973 A global agreement (182

countries) to regulate the

international wildlife trade

and ban trade of endangered

species

Support surveillance efforts

to track species under threat

in the international wildlife

trade and control illegal

wildlife trade activity

Mission statement does not

include the prevention of

spillover (or improving

human health or well-being)

CITES could adopt a

pathogen screening

regulation scheme to be

implemented by all of its

member countries to prevent

the global spread of

emerging diseases that may

also hurt endangered wild

populations

2,4 189,158

Thirty-By-Thirty

Resolution to

Save Nature

2020 Part of a global effort,

spearheaded by the Wyss

Campaign for Nature,

National Geographic

Society, and over 100

organizations

The Natural Resources

Defense Council proposed a

‘commitment to protect

nature and life on Earth’

urging the US federal

government to conserve at

least 30% of US lands and

30% of ocean regions by the

year 2030

Mission statement does not

recognize the additional

human health benefits of

reduced spillover risk via the

proposed conservation

efforts (e.g. conservation of

wildlife habitat and corridors

for safe passage of wildlife

between intact habitats)

Wildlife corridors would aid

conservation of natural

predators and large

consumers, which could help

reduce spillover risk of

zoonotic disease where

predators keep reservoir

populations in check (e.g.

rodents) or where corridors

help migrations of large

herbivores (e.g. caribou)

reducing brucellosis risk

1–3 176,177,222,223

(Continued on next page)
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Table 2. Continued

Initiative

Year

founded Description Biodiversity goals Potential health goals?

Potential extensions for

preventing spillover Generality References

Payments for

Ecosystem

Services (PES)

Program in Costa

Rica

1997 PES requires those who

benefit from ecosystem

services to compensate

stewards of these services

(e.g. landowners keeping

forests intact should be

compensated for the

services their forests

provide, such as carbon

sequestration, clean air, and

clean rivers)

Forest conservation and

restoration aimed to improve

biodiversity conservation

and other recognized

ecosystem services (e.g.

watershed services, carbon

sequestration, and

landscape beauty)

PES programs do not

explicitly include infectious

disease or spillover

prevention

Spillover prevention could be

embedded in existing efforts

(or be introduced as its own

ecosystem service). PES

schemes that conserve

contiguous and diverse

forests could potentially

benefit spillover prevention

by reducing density of small-

bodied mammal reservoir

hosts, and intact forests

serve as carbon sinks

(thereby mitigating climate

change effects on spillover)

1–3 178,179

Project Finance

for Permanence

(PFP)

2010 A model that includes

restoring and conserving

contiguous intact

ecosystems. PFP programs,

e.g. Amazon Region

Protected Areas (ARPA), are

funded by foundations,

NGOs (e.g. WWF), and

government agencies

Aims to improve the

abundance and

management of intact

ecosystems. ARPA intends

to create, consolidate, and

maintain a 60-million-hectare

network of protected areas in

the Brazilian Amazon

Although not a specific PFP

objective, ARPA has likely

reduced cases of malaria

transmission in the Inner

Amazon by slowing the rate

of deforestation. This

example highlights the

potential joint benefits of the

PFP model for conservation

and public health

Spillover prevention is not

yet incorporated in PFP

programs, although they

could be extended to

zoonotic spillover prevention

via similar mechanisms to

PES programs

1–3 182,183,224

Several initiatives are listed along with the four generalities discussed in the main text section ‘Incorporating concepts of ecological diversity to mitigate spillover risk’ that may be considered appli-

cable. Generality numbers in the tables refer to: 1) Large, intact habitat reduces overlap among host species and promotes wildlife health; 2) Loss of predators and competitors reduces regulation of

reservoir host and vector populations; 3) Reservoir hosts are better adapted to human-modified systems; and 4) Human activity may increase opportunities for novel interspecies contacts.
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Box 1. Dimensions of biodiversity.

There are a number of dimensions that comprise ‘biodiversity’, eachwithmultiple axes affecting zoonotic spillover risk. Below are a

handful of examples described by Naeem et al.22, with suggestions for how tomeasure and track each aspect using the universally

developed Group on Earth Observations Biodiversity Observation Network’s essential biodiversity variables (EBVs)225.

d Genetic diversity includes aspects of genomic variability, including nucleotide, allelic, chromosomal, and genotypic variation.

Genetic diversity has yet to be studied in the context of biodiversity change and zoonotic disease risk; however, multiple re-

views14,15 have described how observable patterns in taxonomic diversity are likely, at least in part, the result of genotypic vari-

ation governing phenotypic variation in host physiology and behavior (that is, host resistance, tolerance, and competence) and

thus can influence zoonotic disease risk. EBVs: Intraspecific genetic diversity, Genetic differentiation.

d Taxonomic diversity refers to the number and relative abundance of taxa (for example, species, genera, and higher levels of

taxonomic organization). Disease–diversity relationships are typically described within the context of species richness. One

example relevant to spillover is an increase in diversity of host species, so that vectors take ‘wasted bites’ on non-competent

hosts. In many cases, change in taxonomic diversity per se does not influence zoonotic disease spillover; however, change in

the other dimensions of biodiversity are evident through changes in taxonomic diversity. EBVs: Species distributions, Species

abundances, Community abundance, Taxonomic/phylogenetic diversity.

d Functional diversity refers to the variation in the degree of expression of multiple functional traits: that is, the different types of

processes in a community that are important to its structure and dynamic stability. Examples relevant to spillover include loss of

predators and competitors and increase in abundance of generalist, synanthropic animals. EBV: Trait diversity.

d Interaction diversity refers to the number and relative abundance of interactions among species in a community226. These

biotic interactions include contact, competition, facilitation, and predation. Examples relevant to spillover include a loss of in-

teractions regulating reservoir host species or an increased number of novel cross-species interactions via crowding. EBV:

Interaction diversity.

d Ecosystemphenological diversity is the diversity in the phenological dates of life within an ecosystem (for example, flowering

time). Phenological diversity is a subset of temporal diversity, which is broadly thought of as change in biodiversity over time. An

example relevant to spillover is the reduction in the seasonal availability of resources, which in turn affects sedentarymovement

and eating habits. EBV: Phenology.

d Landscape diversity* is composed of compositional and configuration diversity. Landscape compositional diversity includes

diversity of habitat patches, and configuration diversity includes the number, size, and arrangement of habitat patches. An

example relevant to spillover is an increase in the number of reservoir habitat patches while decreasing their size, thereby

providing increased opportunity for reservoir host–human or host–vector contact. *Note that landscape ecologists commonly

refer to ‘landscape diversity’ as ‘heterogeneity’. EBVs: Live cover fraction, Ecosystem distribution.
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biodiversity not explicitly studied that are likely to influence spill-

over (for example, genetic diversity22). Within our description of

the generalities, we identify ongoing sustainability initiatives

that could incorporate spillover prevention, emphasizing how re-

framing the discussion about biodiversity and disease may facil-

itate win–win outcomes for health and the environment.

Anthropogenic disturbance, biodiversity change, and
disease spillover
Land conversion, agricultural intensification, and

urbanization

As of 2019, agricultural expansion and intensification were the

leading causes of biodiversity loss17. Agricultural development

both clears and fragments previously intact ecosystems,

creating edge habitats that increase human encroachment on

wildlife, homogenizing landscapes to reduce availability of natu-

ral resources for wildlife, and releasing pesticides, fertilizers, and

antimicrobial compounds into the environment. Urbanization,

characterized by the presence of built environments, similarly

clears intact ecosystems while increasing air, water, light, and

land pollution23. Moreover, urbanization significantly increases

human density: 70% of the world’s population is expected to

live in urban areas by 205024. All of these factors contribute to
population declines or even local extinctions of species25–27

and may influence the dynamics of infectious diseases that

have an important environmental component in their transmis-

sion cycle28.

Clearing intact ecosystems for agriculture, urbanization, and

other land modifications (including development of forestry)

drives the loss of large- and medium-bodied animals (that is, de-

faunation) while supporting the persistence or growth of popula-

tions of small-bodied animals29–32. Recent research has made it

clear that loss of functional diversity (defined in Box 1) due to

non-random patterns of defaunation has significant effects on

zoonotic spillover risk10,11,16,33–39. Increase in disease spillover

risk due to changes in functional diversity of animal communities

may occur through the expansion or invasion of opportunistic

zoonotic hosts that thrive in human-modified landscapes or

through the cascading effect of human-induced extirpation of

predators and competitors of zoonotic species, as described

below.

Small-bodied mammals are common pathogen reservoirs,

with the rodent and bat orders containing the highest number

of known zoonotic hosts40–43. Certain taxa of small-bodied ani-

mals are likely to predominate in human-modified landscapes

due to traits that make them adaptable to living in proximity to
Current Biology 31, R1342–R1361, October 11, 2021 R1347



Figure 2. Taxa and habitats affected by
agricultural intensification, urbanization,
and species invasion.
(A) The competent rodent host species (Saccos-
tomus mearnsei) of Bartonella in Kenya (image
courtesy of Hillary Young). Reduced functional di-
versity, due to loss of large consumers and driven
by agricultural expansion and intensification, in-
creases rodent richness and abundance and thus
Bartonella spillover risk. (B) The natural habitat of
the flying fox (a fruit bat of the genus Pteropus) is
threatened by land conversion and urbanization
(reducing ecosystem phenological diversity),
which in turn aggregates flying foxes at higher
densities in urban areas and brings humans into
closer proximity with these natural reservoirs
of Hendra virus (photo by Elizabeth Shanahan).
(C) Supplemental feeding of elk (Cervus cana-
densis) during winter months in Yellowstone
National Park (image courtesy of United States
Geological Survey). Agricultural conversion of land
in North America has limited the availability of
natural winter-feeding grounds for elk (reduced
ecosystem phenological diversity). Large pop-
ulations are dependent on supplemental feeding,
reducing migration and promoting high density
aggregations, thus increasing the risk of brucel-
losis spillover to livestock and humans. (D) A Bur-
mese python (Python bivittatus) in the Everglades
in Florida, USA (photo by Anne Devan-Song). This
invasive species has reduced biodiversity in the
Everglades (taxonomic, functional, and interaction
diversity), thereby increasing the rate at which
vectors feed on competent hosts of Everglade
virus and thus spillover risk in this region.
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humans44,45. These traits, including diet and habitat generalism,

fast-paced life history, high population density, and proximity

with human settlements are positively correlated with zoonotic

reservoir status12,34,41. On a global scale, the richness and abun-

dance of zoonotic hosts (especially birds, bats, and rodents)

positively correlate with the degree of human-mediated land

modification34,46. Local studies in Kenya, Tanzania, and

Madagascar found that this change in functional diversity, such

that communities are dominated by animalswith traits conducive

to adaptation to human environments, increases zoonotic dis-

ease risk: rodent communities in croplands had a higher propor-

tion of competent zoonotic reservoir hosts and higher prevalence

of zoonotic pathogens than in unmanaged areas16,35,47.

Loss of functional diversity in ecological communities may

also be driven by the loss of predators and competitors that

help regulate populations of reservoir hosts and vectors. Land

conversion can drive the replacement of large herbivores with

small herbivores, altering the overall effect of herbivores on the

plant community and ecosystem as a whole33,48. In savanna

ecosystems in central Kenya, exclusion of large herbivores

through fencing, an experimental simulation of what often occurs

with agricultural intensification, resulted in changes in the plant

community and competitive release of small herbivores, leading

to the increase in abundance of competent rodent hosts (Sac-

costomus mearnsei) and prevalence of Bartonella and its vec-

tors33,49 (Figure 1, Table 1, and Figure 2A). Predators of reservoir

hosts and vectors might also exert a crucial role in modulating

the risk of disease spillover for humans10,11. In Senegal, the con-

struction of the Diama dam in 1986 to prevent saltwater intrusion

and support agricultural intensification blocked the migration of
R1348 Current Biology 31, R1342–R1361, October 11, 2021
a native predator (the giant river prawn, Macrobrachium vollen-

hoveni) that consumes snail vectors and free-living Schistosoma

spp., resulting in increased transmission of vector-borne para-

sites to humans36. These findings have been linked to construc-

tion of other large dams as well, and the subsequent increases in

schistosomiasis transmission throughout Africa38. In terrestrial

zoonotic disease systems, the presence of leopards may

decrease risk of rabies transmission to humans by preying on

stray dogs in Mumbai, India37. Further, predator loss can trigger

significantly more complex trophic cascades. The loss of wolves

in the northeastern United States was followed by an increase in

coyotes. This resulted in increased predation by coyotes on

mesopredators (such as foxes), leading to a dramatic reduction

of predators of small mammals that control the abundance of

rodents that carry Lyme disease11. This release of competent ro-

dent reservoir hosts from predation has been linked to expan-

sions in Lyme disease in the last two decades10,11.

In general, land conversion for agriculture can affect land-

scape diversity (Box 1), thereby altering species distributions

and changing contact patterns between wildlife and hu-

mans50–52. Landscape diversity can be described as composi-

tional diversity (including patch-type diversity, defined as

richness of habitat types among patches) and configuration

diversity (including number, size, and arrangement of habitat

patches). These aspects of landscape diversity have nonlinear

and complex responses to anthropogenic change53. As

many existing biodiversity initiatives center around land conser-

vation and restoration, including landscape diversity in the

biodiversity–disease discussion is crucial for identifying syner-

gistic solutions for biodiversity conservation and preventing
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zoonotic spillover. Within monocultures, all metrics of landscape

diversity are reduced. However, in relation to intact ecosystems,

moderate agricultural conversion has various effects on patch-

type diversity, decreases patch size and thus variation in patch

size, and increases the distance among intact habitat

patches54–56. Fragmenting of habitat into small patches can shift

the distribution of reservoir species, causing them to aggregate

at high densities near humans and increasing their contacts —

with humans, previously unencountered mammals, and vec-

tors — thereby increasing potential for transmission57. For

example, Plasmodium knowlesimalaria is expanding in Malaysia

and across Southeast Asia, partially due to forest loss and agri-

cultural land conversion58–63. These disturbances drive the

primary reservoir hosts, long-tailed macaques (Macaca fascicu-

laris) and pig-tailed macaques (Macaca nemestrina), to occupy

small forest fragments within or next to agricultural areas where

they overlap with anthropophilic mosquito vectors and peo-

ple63–65. This shift in distribution not only increases the density

of reservoirs, potentially increasing transmission among reser-

voir hosts, but also increases potential for macaque–vector–hu-

man transmission63 (Table 1). High profile zoonotic pathogens,

such as Ebola virus, may similarly spill over in forest frag-

ments66,67, highlighting the links between changes in landscape

configuration and diversity on zoonotic spillover risk.

Shifts in landscape diversity that skew functional diversity to-

wards favoring reservoir hosts may also increase the risk of zo-

onotic spillover by antimicrobial-resistant organisms. Runoff

from antibiotic-fed livestock forms wastewater lagoons where

diverse bacteria mix. There they face strong selective pressures

to evolve and share (via horizontal gene transfer) genes confer-

ring resistances to those antibiotics68,69. This also occurs

in aquaculture waters70, wastewater from antibiotic-treated

crops71, and effluent from wastewater treatment plants72. Wild-

life that come in contact with polluted waters or soils can pick up

these antimicrobial-resistant bacteria and transport them to both

neighboring and distant croplands or livestock operations,

where they can spill over to people73–77. Global rates of antimi-

crobial resistance are on the rise, driven by the misuse of antibi-

otics in both clinical settings and agriculture, with an estimated

700,000 deaths worldwide caused by antimicrobial-resistant

bacterial infections78. Although existing research on wild

animal reservoirs of antimicrobial-resistant bacteria is severely

limited79, initial studies show that animal populations proximate

or adaptable to human-modified habitats have higher preva-

lence of antimicrobial-resistant bacteria than animals with

little to no contact with humans80, perhaps due to higher host

competency and/or exposure rates to these potentially infec-

tious agents. Smith et al.80 found that the prevalence of

antimicrobial-resistant bacteria in agricultural areas decreased

as the amount of native habitat increased, possibly due to

reduced contact between birds and livestock runoff. As a

result, landscape composition and configuration may reduce

the likelihood of birds becoming inoculated with and transmit-

ting antimicrobial-resistant bacteria. Landscape diversity may

decrease antimicrobial-resistance risk both by protecting crop-

lands from livestock wastewater runoff and by providing vegeta-

tion that acts as a natural ecosystem filter81. The effect of

biodiversity changes on antimicrobial-resistance spillover is

severely understudied but warrants significant attention79,80
given the threat of antimicrobial-resistant bacteria to global

public health82.

Land conversion can also reduce the phenological diversity of

natural ecosystems and food sources (that is, diversity of tempo-

ral or cyclical biological cycles; see ‘Ecosystem phenological di-

versity’, defined in Box 1), which can cause nomadic and

migrating species to forgo migration in favor of occupying the

same habitat year-round. In some cases, formation of resident

populationsmay shift reservoir-host dynamics and alter zoonotic

spillover risk, particularly when loss of seasonal, high-quality nat-

ural resources is paired with provisioning of non-seasonal, sub-

par food83. For example, the reservoir hosts of Hendra virus, the

Pteropus spp. fruit bats, form large nomadic groups that track

seasonally abundant nectar sources. Loss of optimal winter re-

sources, at least in part due to habitat loss, drives these animals

into small resident groups feeding on permanent, suboptimal

food within and around cities21,84,85 (Figure 1, Figure 2B, and

Table 1). Not only does this bring these bats into closer proximity

to humans but also food stress associatedwith these suboptimal

resources may promote viral shedding, increasing the likelihood

of the virus spilling into amplifying hosts (that is, hosts in which a

pathogen can rapidly replicate to high concentrations, for

example horses in this case) and humans86. Similarly, agricul-

tural conversion has limited the availability of high-quality winter

resources for elk, which serve as reservoir hosts of Brucella

abortus (Figure 2C). Large elk populations are now supported

by lower-quality supplemental feeding, which reduces migration

and promotes high-density aggregations, thereby increasing the

spread of Brucella among these animals and potentially spillover

to livestock87–90. Climate change may further exacerbate loss of

phenological diversity and interrelated shifts in animal move-

ment; however, this has not been explicitly linked to zoonotic

spillover91.

Finally, the rural to urban transition that has occurred over time

has released local economies from dependence on local agricul-

ture and opened up trade of goods, services, and ideas with

more distant places92. Through trade with rural areas, urbaniza-

tion interacts with other biodiversity threats to drive changes in

zoonotic spillover; for example, via introduction of pathogens

through the wildlife trade and introduction of invasive species93.

Drastic reduction of non-human-adapted animals in completely

converted land (that is, cities) may reduce the frequency of

spillover of novel zoonotic pathogens94. At the same time, inter-

actions between urbanization and other anthropogenic distur-

bances creates circumstances for pathogen introduction,

especially if pathogens can be sustained via human–human

transmission. For example, urban centers serve as hubs for

long-distance shipping, with urban wildlife markets often con-

taining higher densities and diversity of wildlife. Thus, urban

wildlife markets create unique assemblages of species, subse-

quently increasing the likelihood of novel cross-species trans-

mission95. Then, in the rare case where the biology of the

pathogen allows frequent human–human transmission (for

example, high infectivity to humans, asymptomatic transmis-

sion, aerosol transmission19), the large and dense human popu-

lations found in cities can facilitate rapid pathogen spread,

resulting in large epidemics94 or even pandemics. Spread of

novel zoonotic pathogens may be mitigated by increased health

and subsequent reduced susceptibility in affluent urban areas96.
Current Biology 31, R1342–R1361, October 11, 2021 R1349



Figure 3. Taxa and habitats affected by
climate change and wildlife trade.
(A) An Arctic fox (Vulpes lagopus) in Alaska (image
courtesy of Alaska Department of Fish and Game).
Climate change may increase functional diversity
in polar and temperate regions as native fauna,
such as the Arctic fox, is being replaced by
northwardly range-shifting species, such as the
red fox (B; Vulpes vulpes) (photo by Peter Hudson).
This could potentially increase rabies spillover to
humans in Alaska as the red fox is generally amore
human-landscape adaptable reservoir species.
(C) Several species aggregating around a small
water hole in southern Africa (photo by Nick Fox).
In the tropics and sub-tropics, climate change is
reducing water availability, which may increase
taxonomic and interaction diversity. This in turn
could increase spillover risk of E. coli as more
hosts start to share common water resources. (D)
Elephants in Tarangire National Park, Tanzania,
protected from poaching (photo by Peter Hudson).
The wildlife trade is reducing wild elephant pop-
ulations and other large-bodied animals, thereby
decreasing biodiversity (taxonomic, genetic,
functional, interaction, and landscape diversity)
and leading to a higher demand for meat from
small-bodied mammals such as bats, potentially
increasing spillover risk of Ebola and other disease
borne by small mammals.
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However, the opposite may be true in urban areas that are un-

planned or designed to oppress groups of people (that is,

without centralized infrastructure and equitable distribution of

resources). In these areas, human health might be compromised

by increased pollution, lack of affordable healthcare, and limited

access to healthy food and clean water93,97.

Climate change

Species may respond to climate change through phenotypic

plasticity98, rapid adaptive evolution99, and altitudinal and latitu-

dinal range shifts to the edge of their geographic ranges100–102.

Alternatively, species may undergo local population extinctions,

range shifts, or even global extinction103–107. Further, the velocity

of rising temperatures varies across different regions of the

world, affecting species and populations differently108. Together

these responses can drive biodiversity change in complex,

nonlinear, and interdependent ways. Here, we focus on case

studies of range shifts in response to rapid anthropogenic

climate change, as it is the most immediately observable

impact of climate change on wildlife hosts that harbor zoonotic

pathogens109,110. Plastic, adaptive, and local declines or

extirpation responses are currently well researched111–113, with

the amphibian decline being perhaps the most emblematic

case114, but they are rarely connected to pathogen spillover.

The abundance of different species with certain traits or

ecosystem functions (for example, diet, habitat, activity patterns,

etc.), and thus functional diversity, may decline with range shifts,

especially at high latitudes, although taxonomic diversity (Box 1)

of some systems may increase with range shifts115–117. This is

largely attributed to generalists outnumbering specialists in sys-

tems impacted by global change, as generalists are able to thrive

in a variety of ecological conditions, including human-modified

landscapes, whereas specialists need specific resources and/

or habitats to survive. At the same time, correlative analyses sug-

gest that zoonotic reservoirs are more likely to be generalist
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species34,39,118, as they are more likely to live in closer proximity

to people and contact a wider range of other host species.

Further, climate-induced loss of forest habitat may lead to an in-

crease in abundance of extreme generalists with zoonotic reser-

voir potential, as in the case of the highly adaptable deer mice

harboring Sin Nombre virus119.

The Alaskan Arctic is currently exhibiting climate-induced

shifts in host species, with an increase in the abundance of zoo-

notic hosts more likely to contact humans. Before contemporary

climate change, the ranges of Arctic and red foxes (Figure 3A,B),

both of which serve as reservoir hosts for rabies, were sepa-

rated120. However, with climate change, the home range of the

generalist red fox has expanded northward, encroaching on

the territory of the Arctic fox, which is more of a habitat

specialist121. Arctic fox numbers were already in decline due to

other effects of climate change, such as the loss of sea ice and

tundra habitat as well as loss of lemming prey, but red foxes

are expediting this decline through intraguild predation and

competition for resources122–124. As Arctic fox populations are

replaced by red fox populations, the red fox will become the pri-

mary reservoir for rabies spillover. As immigrant red foxes

increasingly interact with resident Arctic foxes, this shift in the

reservoir community will likely increase epizootic peaks of

rabies, increasing both the transmission rate and the overall den-

sity of susceptible individuals125. Further, because the larger-

bodied red fox displaysmore aggressive behavior than the Arctic

fox120, and because it is more adaptable to human-dominated

landscapes, contact rates between wild rabies reservoirs and

dogs or humans might increase, thus increasing rabies spillover

risk (Figure 1, Table 1, and Figure 3A,B).

Climate change may reduce other dimensions of biodiversity

beyond functional diversity. For instance, climate change may

reduce landscape diversity by reducing patch diversity and sub-

sequently increase the likelihood of cross-species transmission
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through increased habitat overlap and taxonomic diversity in

confined areas126. For instance, themelting of sea ice alters, dis-

rupts, or even prevents migration patterns of animals such as

wild caribou127, increasing the chance of intermingling among

caribou and with other wild or domestic ungulates. Thus, people

who rely on caribou and/or other livestock might be at higher risk

of brucellosis spillover under a warming climate in temperate re-

gions128. Similarly, in water-stressed parts of Africa, extreme

droughts can force many animals — that may previously have

used different water bodies and had little to no contact with

one another, such as humans, wildlife, and livestock — to

congregate at common water sources129,130 (Figure 3C),

increasing traffic and reducing water quality due to elevated

fecal loads. In Chobe National Park, Botswana, these patterns

and processes are associated with increased loads of Escheri-

chia coli, the leading cause of diarrheal outbreaks130. Following

drought events in and around Chobe National Park, heavy sea-

sonal rainfall and flooding mobilize pathogen-containing feces,

subsequently leading to human diarrheal outbreaks in neigh-

boring communities131 (Table 1). Further, these water sources

have the potential to serve as melting pots of antimicrobial resis-

tant bacteria and sources of novel pathogen emergence132.

Invasive species

Invasive species (that is, organisms that establish and spread

outside their native range) present a significant threat to ecosys-

tems and human well-being by negatively impacting native

biodiversity and ecosystem services133. Through processes

such as predation, competition, and environmental modification,

invasive species can drastically decrease the biodiversity of an

ecosystem; an estimated 30 species of invasive predators alone

are responsible for at least 58% of all bird, mammal, and reptile

extinctions globally134. Invasive species can indirectly impact in-

fectious disease by altering the structure and composition of the

native community in ways that either increase or decrease path-

ogen transmission.

Altering a native community in a way that increases zoonotic

spillover risk has been empirically demonstrated for the Ever-

glade virus, a mosquito-borne zoonotic virus. The introduction

of the Burmese python (Python bivittatus; Figure 2D) to the

Florida Everglades has led to large-scale declines in functional

and taxonomic mammalian diversity due to predation and sub-

sequent precipitous loss of large and small-bodied mam-

mals135,136. With the loss of deer, racoons, and opossums as

food sources for blood-sucking arthropods, mosquito vectors

of Everglades virus turned increasingly to the primary reservoir

host of the virus, the hispid cotton rat (Sigmodon hispidus).

This has resulted in higher rates of Everglade virus infection in

mosquitoes, potentially increasing the risk of virus exposure to

humans136,137. The Burmese python–Everglade virus case study

is a clear example of the dilution effect: higher taxonomic diver-

sity of hosts reduces disease risk because the vector takes

‘wasted bites’ (from a pathogen-transmission perspective) on

non-competent hosts. The loss of taxonomic diversity therefore

increases disease spillover risk, with the dilution effect most

commonly occurring for vector-borne, zoonotic pathogens, as

is the case here9.

In contrast, introduction of invasive species can sometimes

reduce transmission of infectious disease from vectors to people

through predation on various vector life stages: for example,
larvivorous fish preying on malaria vectors138 and crayfish

consuming schistosome intermediate hosts139. However,

despite crayfish lowering the risk of schistosomiasis by vora-

ciously consuming snail intermediate hosts and free-living para-

sites, invasive crayfish compromised other dimensions of human

health by consuming rice and degrading canal banks with their

burrows140. Consequently, in scenarios where invasive species

reduce disease risk there can still be a tension between biodiver-

sity impacts of invasive species and their specific ecological

roles in infectious-disease dynamics.

Invasive species may also affect infectious-disease dynamics

by acting as vectors or reservoir hosts40,47,141–143, sharing path-

ogens with native species144–146, or providing resources for

reservoirs and/or vectors143,147. In these cases, biodiversity con-

servation via invasive species control may simultaneously

reduce zoonotic spillover risk143. The same processes that drive

species introductions, including global trade and travel, may also

drive disease emergence, suggesting that win–win solutions for

protecting ecosystems from species invasion and humans from

pathogen spillover might be possible, albeit potentially chal-

lenging from a technical or political perspective148.

Wildlife hunting, trade, and consumption

One in five vertebrate species is impacted by trade149, with some

wildlife facing population declines and/or species extinction due,

mainly or in part, to the impacts of wildlife trade— some legal but

primarily illegal (for example, tigers, rhinoceroses, elephants,

sharks, and pangolins)150,151 (Figure 3D). The illegal wildlife trade

is estimated to be the world’s second largest underground

business (hypothesized to be a 5–20 billion-dollar industry)

after narcotics152. The legal wildlife trade, estimated to be an

even larger business (300 billion-dollar industry), also poses a

threat to biodiversity as the majority of legal wildlife trade

(78%) is composed of wild-caught animals, as opposed to those

reared in captivity153. The local increase or decrease of biodiver-

sity, as well as novel contacts made during translocation and

trade between species that do not co-occur naturally in the

wild, may drive spillover and disease emergence, as explained

below.

Epidemiological and genetic analyses have linked wildlife

hunting, trade, and consumption to spillover and spread of

many high-profile zoonotic pathogens: rabies virus, Crimean-

Congo hemorrhagic fever virus, the plague-causing bacteria

Yersinia pestis, monkeypox virus, coronaviruses, HIV, Marburg,

and Ebola viruses150,151,153–156. However, in order to stop ormiti-

gate the spillover process, we need to better understand the

mechanisms linking the wildlife trade to the eco-epidemiological

process of spillover (Figure 1).

The wildlife trade highlights how anthropogenic pressures can

increase spillover risk via a direct increase in both taxonomic di-

versity and the number of interactions across taxa on very small

spatial scales (see ‘Interaction diversity’ defined in Box 1).

Throughout the supply chain, the wildlife trade brings together

high densities of species that typically would not contact each

other in natural habitats. These unique assemblages and interac-

tions can promote cross-species transmission, increasing the

likelihood that a pathogen may be transmitted to amplifying

hosts and/or humans154,157–163. Trade may also impact the

spillover process by promoting pathogen shedding from animals

because of stress during transportation and unsanitary
Current Biology 31, R1342–R1361, October 11, 2021 R1351
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conditions at markets154,157–163. For example, the ancestor to

SARS-CoV-1 is suspected to have been transmitted from horse-

shoe bats (most likely Rhinolophus sinicus) to palm civets, two

species that do not interact in wild settings. However, palm

civets served as amplifying or intermediate hosts within wildlife

markets, bringing the virus in closer proximity to humans164–166.

Seroprevalence and virological testing surveys of civets on farms

versus those brought to markets in Guangdong, China suggest

that palm civets were exposed to the virus at the end of the sup-

ply chain165–167. In a study in Vietnam, the prevalence of corona-

viruses in field rats caught or reared for human consumption and

sold in markets was more than double that of field rats in the

wild162. Further, coronavirus prevalence was ten times higher

in field rats sold or served in restaurants compared with field

rats in the wild162. Thus, the wildlife trade creates opportunities

for increased transmission among multiple wild animal species

and puts humans in closer proximity to stressed and infected

wildlife, fueling the potential for spillover of pathogens (Figure 1

and Table 1).

The wildlife trade for human consumption can take on various

forms, including commercial harvesting of wild animals on land

and at sea. Together, these interact to amplify the effects of over-

harvesting, leading to a decrease of many types of biodiversity,

such as taxonomic, genetic, functional, interaction, and land-

scape diversity (Box 1). For example, the wild meat trade in

Ghana, which has driven population declines of some mamma-

lian species in the last few decades, correlates with local de-

clines in fish supply, probably due to commercial overfishing

off the coast168,169. Conceivably, during periods when the de-

mand for wild meat is high, hunters and people involved with

butchering and preparation are at a higher risk of disease spill-

over from bites, scratches, and contacts with bodily fluids of an-

imals that serve as pathogen reservoirs. In the Congo basin and

other regions where pathogens have recently emerged, wild

meat serves as an important protein source in impoverished

households. This makes the banning of wild meat a controversial

topic170 even though genetic and epidemiological evidence sug-

gest that wild meat consumption has contributed to the rise of

emerging diseases and recent outbreaks via spillover from wild-

life to humans of pathogens like Ebola (Table 1), HIV, Marburg,

and monkeypox viruses154,171,172. In Cameroon, simian foamy

viruses regularly spill over and infect wild meat hunters, but no

human–human transmission has yet been established154.

Conversely, although HIV has adapted to undergo human–

human transmission, phylogenetic analyses suggest that

approximately ten spillover events occurred over the past cen-

tury before it eventually evolved to cause a pandemic, suggest-

ing that frequent spillover during bushmeat hunting was critical

for its emergence151.

Overexploitation of wild meat and other anthropogenic pres-

sures have also been correlated with a decrease in the propor-

tion of large-bodied mammals and an increase in the proportion

of small-bodied mammals brought to market173,174. As a result,

preliminary research suggests that overharvesting of wildlife

may influence the types of wild animals that hunters and con-

sumers are contacting, potentially presenting new zoonotic spill-

over risks. However, mechanistic links between change in

composition of wildlife markets and zoonotic disease risk have

not yet been established.
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Incorporating concepts of ecological diversity to
mitigate spillover risk
Although mechanistic research linking changes in biodiversity to

zoonotic spillover risk is limited due to expense and logistical

challenges, by considering more mechanism-based changes in

biodiversity, we collect enough empirical examples to propose

four general concepts that have potential to inform biodiversity

conservation. These generalities may motivate further integra-

tion of biodiversity and zoonotic pathogen spillover research,

potentially opening more avenues of funding and facilitating

the incorporation of multi-disciplinary methods for collecting

and analyzing data. To illustrate this application of our synthesis,

we identify ongoing biodiversity and sustainability initiatives that

could use these generalities to incorporate spillover prevention.

Using the frameworkwe proposemay, for example, help to avoid

unintended harms from biodiversity conservation or broaden the

benefits of biodiversity conservation. Echoing Halsey8, we

distinguish between generality, that which is mostly considered

true, and universality, that which is considered true in all possible

contexts. These four generalities (described below) may bemore

or less applicable for different ecosystems and disease threats.

Generality number 1: Large, intact habitat reduces

overlap among host species and promotes wildlife

health

Loss of spatially and phenologically diverse habitat alters the

spatiotemporal distributions of reservoirs, leading to increased

overlap with other vertebrate hosts, vectors, and humans. This

generality suggests an opportunity: preserving and restoring

large, contiguous, and heterogeneous habitats could minimize

harmful contact between humans and wildlife and between

host species that do not commonly interact (for example, a

reservoir and an amplifying host). Such an approach might addi-

tionally reduce the density of reservoir hosts and subsequent

intraspecific contact and transmission. The Bonn Challenge175,

Thirty-by-Thirty Resolution to Save Nature176,177, Payments for

EcosystemServices178–180, and Project Finance for Permanence

projects181–183 all include conservation and/or restoration of nat-

ural ecosystems but do not incorporate spillover prevention in

project design and implementation (Table 2). Intact and diverse

contiguous landscapes may also promote landscape immunity,

defined as ecological conditions that maintain and strengthen

immunity in resident fauna so as to reduce pathogen susceptibil-

ity and shedding, particularly for potential reservoir species

including bats and rodents184,185. Further, targeted habitat con-

servation and restoration could encourage previous migration

patterns by re-creating or maintaining phenological diversity

of high-quality food sources, such as nectar resources for

bats21,143. However, in some cases, resource provisioning —

through invasive species, crops, and even waste disposal

practices — may reduce migration even when endemic, pheno-

logically diverse habitats are available186,187. More research

differentiating the impact of habitat restoration versus limiting

human provisions is needed. Importantly, some biodiversity con-

servation initiatives, such as Payment for Ecosystem Services in

Costa Rica179, include agroforestry, which could hypothetically

increase human exposure risk to zoonotic disease188. In these

cases, the effect of landscape diversity and specific agroforestry

practices on spillover should be considered so as not to put

biodiversity conservation and public health at odds. Overall,
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studying the mechanistic effect of landscape diversity and

ecosystem phenological diversity on each spillover process

(Figure 1) should lead to new insights that can guide evidence-

based policy for both conserving natural ecosystems and

reducing spillover risk.

Generality number 2: Loss of predators and competitors

reduces regulation of reservoir host and vector

populations

Loss of large consumers and predators (changes in functional di-

versity) can result in increased abundance of animals with fast

growth rates and relatively small ranges, such as rodent reser-

voirs and arthropod vectors. Regulation of poaching (for

example, via the Convention on International Trade in Endan-

gered Species189 initiative) and habitat conservation, preserva-

tion, and restoration of contiguous, intact ecosystems could

support populations of large predators and herbivores174,190,191.

In turn, predators and large consumers may be important in eco-

tones between intact and anthropogenic landscapes, where

they can regulate populations of small-bodied reservoirs that

thrive in human-modified areas. The initiatives aimed to restore

and conserve habitat in Table 2 could be adapted to support

populations of wildlife that help regulate rodent populations.

For example, the Thirty-by-Thirty Resolution to Save Na-

ture176,177 proposes conservation of wildlife habitat and corri-

dors for safe passage of wildlife between intact habitats. This

plan could be improved by configuring habitats and corridors

to best support populations of keystone predators and large

consumers in areas of zoonotic disease risk. More research is

needed to understand the impacts that large herbivores and

predators have on zoonotic disease regulation, especially within

and around ecotones. If more evidence supports a beneficial ef-

fect of conserving predators and large herbivores for reducing

spillover risk without increasing human–wildlife conflict, conser-

vation of predators and large consumers may offer another

promising solution.

Generality number 3: Reservoir hosts are better adapted

to human-modified systems

Humanmodification further affects functional diversity by chang-

ing habitats and shifting communities toward dominance by spe-

cies that are resilient to anthropogenic disturbance or thrive in

human-dominated landscapes. Change in functional diversity

towards such ‘synanthropic’ species has been observed across

taxonomic groups of vertebrates including rodents, birds, and

carnivores. Similar effects have been observed for disease vec-

tors: generalists thrive in urban areas and have high capacity to

transmit pathogens to humans38,192,193. Integrative approaches,

such as direct management of invasive rodents and vectors or

indirect management through preserving intact habitat and miti-

gating impacts of climate change to reduce range shifts of reser-

voirs and vectors, are likely necessary143,194. Initiatives that

guide policy and coordinate action to protect biodiversity from

multiple anthropogenic threats, such as the Convention on Bio-

logical Diversity195, may be particularly well suited to prevent

spillover from these human-adapted reservoirs and vectors.

For example, the Convention on Biological Diversity sets global

priorities and coordinates global action on invasive species

and climate change, providing a platform to jointly manage inva-

sive reservoir hosts and vectors while advocating for climate

resilient ecosystems on a global scale.
Generality number 4: Human activity may increase

opportunities for novel interspecies contacts

Commercial wildlife trade, introduction of invasive species, and

transportation of livestock and companion animals are activities

that increase interaction diversity, introduce more opportunities

for cross-species transmission, and facilitate the emergence

of new pathogens with zoonotic spillover potential. The Conven-

tion on International Trade in Endangered Species189 aims

to control the illegal wildlife trade but does not include objectives

that prevent spillover. Adopting global regulations on pathogen

screening and ethical and sanitary animal husbandry standards

in the international wildlife trade could be a natural next step

in advancing management of zoonotic spillover. Overall,

regulations and initiatives that reduce diversity of novel interspe-

cies interactions should be adjusted to incorporate spillover

prevention.

Other international initiatives are currently working towards

sustainable solutions for promoting both public health and con-

servation, such as the UN Sustainable Development Goals196,

Intergovernmental Science-Policy Platform on Biodiversity and

Ecosystem Services (IPBES) Nature’s Contributions to Peo-

ple197, International Union for Conservation of Nature’s Global

Standards for Nature-Based Solutions198, Bridge Collabora-

tive199, Pan American and World Health Organizations (PAHO/

WHO) Climate Change and Health200, Global Health Security

Agenda201, and the collaboration among Food and Agriculture

Organization (FAO), World Organisation for Animal Health

(OIE), andWHO (FAO-OIE-WHOCollaboration)202. The initiatives

included in Table 2 have not yet incorporated spillover

prevention.

We emphasize that the initiatives described here must only be

implemented based upon local context, centered around the

needs, demands, and culture of the local people. A number of

global restoration and conservation efforts have been criticized

as colonialist and thus detrimental to vulnerable and marginal-

ized groups of people. For example, the Bonn Challenge has

been criticized for foresting historically savannah ecosystems,

thereby impacting ecosystem function and rangeland liveli-

hoods203. The Payment for Ecosystem Services in Costa Rica

has been rebuked as not adequately compensating people for

the service they provide204. Further, Thirty by Thirty has been

challenged for disproportionately, negatively impacting Indige-

nous communities via exclusion from land ownership and

management, despite the outsized, positive effect that some

Indigenous practices have on biodiversity205. These initiatives

may be improved by creating context-dependent management

plans that are designed around and implemented by local com-

munities and Indigenous groups. One way to achieve this is

through conservation of land via Indigenous Protected Areas:

although defined differently depending on the country, Indige-

nous Protected Areas are generally large areas of intact ecosys-

temsmanaged or co-managed by Indigenous groups. More than

46% of national reserves within Australia are Indigenous Pro-

tected Areas206, and a small but increasing proportion of pro-

tected land in Canada is comprised of Indigenous Protected

Areas (for example, Thaidene Nën�e Indigenous Protected Area,

the homeland of the qutsël K’�e Dene First Nation)207. The United

States and countries with similar Thirty by Thirty goals can and

should create similar protected areas. Another successful model
Current Biology 31, R1342–R1361, October 11, 2021 R1353
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is Health in Harmony’s programs in Borneo, Madagascar, and

Brazil, which start with ‘radical listening’ within rainforest com-

munities to co-develop community-based conservation and

health programs that reduce deforestation and provide afford-

able healthcare access208.

We additionally emphasize that biodiversity conservation is not

a panacea for zoonotic spillover prevention, and many systems

are too complex or understudied to define clear links between

biodiversity change and spillover risk. For example, highly

diverse multi-host, multi-vector systems such as West Nile Virus,

Ross River virus209,210, leishmaniasis211, and Chagas disease212

require more studies to document ecological drivers of reservoir

and vector abundances and capacities to transmit disease.

Further, reservoir host species that contribute most to transmis-

sion may be variable along geographic and land-use gradi-

ents213–218. Even when conservation-related levers for spillover

prevention exist, their impacts should be compared to those of

other approaches (including economic and biomedical) and im-

plemented from a community-based, environmental-justice

perspective. Thus, sustainable solutions for alleviating zoonotic

disease burdenwhile conserving biodiversity shouldbe evaluated

based on specific knowledge of the socio-ecological context1.

Conclusions and future directions
We identified mechanistic evidence in the literature that anthro-

pogenically driven biodiversity change may increase zoonotic

spillover risk. Several common themes emerged. First, the loss

of intact habitat increases overlap between reservoirs and other

vertebrate hosts, vectors, and humans. Second, loss of large-

bodied consumers and predators (defaunation) can result in

increased abundance of rodent reservoirs. Third, human-modi-

fied landscapes change the functional diversity of species as-

semblages, increasing the proportion of species that are able

to adapt and thrive in anthropogenic environments, and thereby

increasing human exposure to zoonotic pathogens. Fourth,

other forms of anthropogenic disturbance generated by agricul-

ture and trade of domestic animals and wildlife lead to the intro-

duction of invasive species and increase interaction diversity,

facilitating opportunities for cross-species transmission and

thus the potential for emergence of novel pathogens with zoo-

notic spillover potential. Hence, anthropogenic drivers of biodi-

versity change interact in complex ways, including synergies

and both direct and indirect effects. The combined impacts of

many different anthropogenic disturbances may exacerbate

the effects of biodiversity change on spillover risk.

Certain disease systems are either understudied or too com-

plex to elucidate the effects of biodiversity changes on

spillover risk. In addition, some components of the spillover pro-

cess (Figure 1) are better studied than others in this context.

Based on our review, the effects of biodiversity changes on wild-

life-host susceptibility, pathogen shedding, and pathogen prev-

alence in the reservoir are three important steps of spillover that

are understudied and warrant further investigation. These as-

pects are difficult to observe219, but another possible reason

that they have been understudied could be a lack of appreciation

for howwildlife health—and not just presence or absence of dis-

ease agents—may affect zoonotic spillover risk. When exposed

to stress from anthropogenic activities, wildlife hosts may expe-

rience suppressed immunity, rendering them more susceptible
R1354 Current Biology 31, R1342–R1361, October 11, 2021
to opportunistic infections, more pathogen shedding, and

altered behavior that further increases their exposure to patho-

gens185,220. Thus, increased pathogen surveillance and health

assessments of wildlife may be useful for understanding mech-

anisms by which environmental stressors affect wild animal

health and lead to changes in the process of disease spillover

to people and domestic animals. Finally, there is an urgent

need for spatially and temporally replicated field studies incorpo-

rating biodiversity change, pathogen dynamics, and wildlife host

immunology184,185, in addition to human health outcomes.

The world is undergoing rapid anthropogenic change with

detrimental effects on biodiversity and the health of organisms,

including humans. Efforts are underway to combat the impact

of anthropogenic disturbances on biodiversity. However, since

biodiversity change may affect zoonotic disease spillover

through multiple mechanisms, it is imperative that biodiversity

conservation efforts also incorporate actions to prevent spillover.

Spillover is an issue not only for public health, but also for conser-

vation of threatened wildlife. Here, we argue that reframing dis-

cussions of biodiversity and disease around a more inclusive

definition of biodiversity and considering the context of each of

the complex social-ecological systems inwhich the spillover pro-

cess occurs (Figure 1 and Box 1) are essential to highlight mech-

anistic links between biodiversity and zoonotic spillover. This

approach sheds light on how to develop sustainable interven-

tions that prevent zoonotic spillover while protecting biodiver-

sity—to the benefit of both humans and the environment.
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56. Urrutia, A.L., González-Gónzalez, C., Van Cauwelaert, E.M., Rosell, J.A.,
Garcı́a Barrios, L., and Benı́tez, M. (2020). Landscape heterogeneity of
peasant-managed agricultural matrices. Agric. Ecosyst. Environ. 292,
106797.
R1356 Current Biology 31, R1342–R1361, October 11, 2021
57. Bloomfield, L.S.P., McIntosh, T.L., and Lambin, E.F. (2020). Habitat frag-
mentation, livelihood behaviors, and contact between people and
nonhuman primates in Africa. Landscape Ecol. 35, 985–1000.

58. Chang, M.S., Hii, J., Buttner, P., and Mansoor, F. (1997). Changes in
abundance and behaviour of vectormosquitoes induced by land use dur-
ing the development of an oil palm plantation in Sarawak. Trans. R. Soc.
Trop. Med. Hyg. 91, 382–386.

59. Cox-Singh, J., Davis, T.M.E., Lee, K.-S., Shamsul, S.S.G., Matusop, A.,
Ratnam, S., Rahman, H.A., Conway, D.J., and Singh, B. (2008). Plasmo-
dium knowlesimalaria in humans is widely distributed and potentially life-
threatening. Clin. Infect. Dis. 46, 165–171.

60. Brock, P.M., Fornace, K.M., Parmiter, M., Cox, J., Drakeley, C.J., Fergu-
son, H.M., and Kao, R.R. (2016). Plasmodium knowlesi transmission:
integrating quantitative approaches from epidemiology and ecology to
understand malaria as a zoonosis. Parasitology 143, 389–400.

61. Fornace, K.M., Abidin, T.R., Alexander, N., Brock, P., Grigg, M.J., Mur-
phy, A., William, T., Menon, J., Drakeley, C.J., and Cox, J. (2016). Asso-
ciation between landscape factors and spatial patterns of Plasmodium
knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208.

62. Manin, B.O., Ferguson, H.M., Vythilingam, I., Fornace, K., William, T.,
Torr, S.J., Drakeley, C., and Chua, T.H. (2016). Investigating the contribu-
tion of peri-domestic transmission to risk of zoonotic malaria infection in
humans. PLoS Negl. Trop. Dis. 10, e0005064.

63. Davidson, G., Chua, T.H., Cook, A., Speldewinde, P., and Weinstein, P.
(2019). Defining the ecological and evolutionary drivers of Plasmodium
knowlesi transmission within a multi-scale framework. Malar. J. 18, 66.

64. Brant, H.L., Ewers, R.M., Vythilingam, I., Drakeley, C., Benedick, S., and
Mumford, J.D. (2016). Vertical stratification of adult mosquitoes (Diptera:
Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 15,
370.

65. Vythilingam, I., Wong, M.L., andWan-Yussof, W.S. (2018). Current status
of Plasmodium knowlesi vectors: a public health concern? Parasitology
145, 32–40.

66. Rulli, M.C., Santini, M., Hayman, D.T.S., and D’Odorico, P. (2017). The
nexus between forest fragmentation in Africa and Ebola virus disease
outbreaks. Sci. Rep. 7, 41613.
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rubbish dumps on breeding success in the white stork in southern Spain.
Waterbirds 25, 39–43.

187. Satterfield, D.A., Maerz, J.C., and Altizer, S. (2015). Loss of migratory
behaviour increases infection risk for a butterfly host. Proc. R. Soc. B
Biol. Sci. 282, 20141734.

188. Rosenstock, T.S., Dawson, I.K., Aynekulu, E., Chomba, S., Degrande, A.,
Fornace, K., Jamnadass, R., Kimaro, A., Kindt, R., Lamanna, C., et al.
(2019). A planetary health perspective on agroforestry in sub-Saharan Af-
rica. One Earth 1, 330–344.

189. World Wildlife Fund (2021). Convention on International Trade in Endan-
gered Species of Wild Fauna and Flora, https://www.worldwildlife.org/
pages/cites. (Accessed 7 June 2021.)

190. Stoner, C., Caro, T., Mduma, S., Mlingwa, C., Sabuni, G., and Borner, M.
(2007). Assessment of effectiveness of protection strategies in Tanzania
based on a decade of survey data for large herbivores. Conserv. Biol. 21,
635–646.

191. McIntosh, A.R., McHugh, P.A., Plank, M.J., Jellyman, P.G., Warburton,
H.J., and Greig, H.S. (2018). Capacity to support predators scales with
habitat size. Sci. Adv. 4, eaap7523.

192. Vittor, A.Y., Pan, W., Gilman, R.H., Tielsch, J., Glass, G., Shields, T., Sán-
chez-Lozano, W., Pinedo, V.V., Salas-Cobos, E., Flores, S., et al. (2009).
Linking deforestation to malaria in the Amazon: Characterization of the
breeding habitat of the principal malaria vector, Anopheles darlingi.
Am. J. Trop. Med. Hyg. 81, 5–12.

193. Xia, S., Dweck, H., Lutomiah, J., Sang, R., McBride, C., Rose, N.,
Ayala, D., and Powell, J. (2021). Larval breeding sites of the mos-
quito Aedes aegypti in forest and domestic habitats in Africa
and the potential association with oviposition evolution. Authorea,
https://doi.org/10.22541/au.161717899.92634794/v1.

194. Sokolow, S.H., Nova, N., Pepin, K.M., Peel, A.J., Pulliam, J.R.C.,
Manlove, K., Cross, P.C., Becker, D.J., Plowright, R.K., McCallum,
H., et al. (2019). Ecological interventions to prevent and manage zo-
onotic pathogen spillover. Philos. Trans. R. Soc. B Biol. Sci. 374,
20180342.

195. Convention on Biological Diversity (2019). POST2020 Global Biodiversity
Framework: Updated synthesis of the proposals of parties and
observers on the structure of the post-2020 global biodiversity
framework and its targets, https://www.cbd.int/doc/c/ef28/32d6/
883b8de693927c8baa2e4d0a/post2020-prep-01-inf-03-en.pdf.

196. United Nations Department of Economic and Social Affairs. The 17
Goals, https://sdgs.un.org/goals. (Accessed 7 June 2021.)

197. Intergovernmental Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES). Nature’s contributions to people, http://
www.ipbes.net/glossary/natures-contributions-people. (Accessed June
7, 2021.)

198. International Union for Conservation of Nature (2020). IUCN global stan-
dard for NbS, https://www.iucn.org/theme/nature-based-solutions/
resources/iucn-global-standard-nbs. (Accessed 7 June 2021.)

199. Bridge Collaborative, https://bridgecollaborativeglobal.org/. (Accessed
7 June 2021.)

200. Pan American Health Organization. Climate Change and Health, https://
www.paho.org/en/topics/climate-change-and-health. (Accessed 7 June
2021.)

201. Global Health Security Agenda, https://ghsagenda.org/. (Accessed 7
June 2021.)

202. FAO, OIE, and WHO (2010). The FAO-OIE-WHO Collaboration. A
tripartite concept note, https://www.who.int/foodsafety/zoonoses/final_
concept_note_Hanoi.pdf.

203. Vetter, S. (2020). With power comes responsibility — a rangelands
perspective on forest landscape restoration. Front. Sustain. Food Syst.
4, 549483.

204. Arriagada, R.A., Sills, E.O., Ferraro, P.J., and Pattanayak, S.K. (2015). Do
payments pay off? Evidence from participation in Costa Rica’s PES Pro-
gram. PLoS One 10, e0131544.
R1360 Current Biology 31, R1342–R1361, October 11, 2021
205. Agrawal, A., Bawa, K., Brockington, D., Brosius, P., D’Souza, R., DeFries,
R., Dove, M.R., Duffy, R., Kabra, A., Kothari, A., et al. An open letter to the
lead authors of ‘Protecting 30% of the planet for nature: costs, benefits
and implications, https://openlettertowaldronetal.wordpress.com/. (Ac-
cessed 14 August 2021.)

206. Australian Government, Department of Agriculture, Water and the Envi-
ronment. Indigenous Protected Areas, https://www.environment.gov.
au/land/indigenous-protected-areas. (Accessed 14 August 2021.)

207. Government of Canada, Parks Canada. Thaidene Nene National Park
Reserve, https://www.pc.gc.ca/en/pn-np/nt/thaidene-nene/gestion-
management/protected. (Accessed 14 August 2021.)

208. Jones, I.J., MacDonald, A.J., Hopkins, S.R., Lund, A.J., Liu, Z.Y.-C.,
Fawzi, N.I., Purba, M.P., Fankhauser, K., Chamberlin, A.J., Nirmala, M.,
et al. (2020). Improving rural health care reduces illegal logging and con-
serves carbon in a tropical forest. Proc. Natl. Acad. Sci. USA 117, 28515–
28524.

209. Stephenson, E.B., Peel, A.J., Reid, S.A., Jansen, C.C., and McCallum, H.
(2018). The non-human reservoirs of Ross River virus: a systematic re-
view of the evidence. Parasit. Vectors 11, 188.

210. Kain, M.P., Skinner, E., van den Hurk, A.F., McCallum, H., and Mordecai,
E. (2021). Physiology and ecology combine to determine host and vector
importance for Ross River virus. eLife 10, e67018.
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